Category: компьютеры

Category was added automatically. Read all entries about "компьютеры".

Эволюция носителей информации, часть 4: твердотельные накопители

Это заключительная часть нашего материала об эволюции носителей информации. И сегодня речь пойдет о флеш-памяти и твердотельных накопителях — об их прошлом, настоящем и будущем.



Флеш-память была создана задолго до появления первого флеш-накопителя. Отцом флеш-памяти считается инженер компании Toshiba Фудзио Масуока, чье изобретение было представлено в 1984 году на конференции IEEE в Сан-Франциско. Кстати, само название «flash» придумал коллега Масуоки – Сёдзи Ариидзуми. Процесс удаления данных из такой памяти напомнил ему фотовспышку (от англ. flash – вспышка).
[Далее >>>]



В основе работы флеш-памяти лежит изменение и регистрация электрического заряда в изолированной области полупроводниковой структуры. Существует несколько типов флеш-памяти. Первым коммерческим продуктом стала флэш-память типа NOR, которую разработала компания Intel. Это случилось в 1988 году.


В конструкции NOR-флеш используется классическая двухмерная матрица проводников, в которой на пересечении строк и столбцов располагается одна ячейка. Преимущество такого дизайна состоит в том, что он позволяет моментально читать состояние конкретной ячейки, подавая положительное напряжение на соответствующую строку и столбец.

В 1989 году компания Toshiba представила флеш-память типа NAND. Главным отличием NAND-флеш от NOR-чипов заключалось в том, что в конструкции NAND использовался трехмерный массив, а не двухмерная матрица. Другими словами, если в NOR на пересечении строк и столбцов располагалась только одна ячейка, то в NAND их могло быть несколько.


Естественно, так же легко получить доступ к конкретной ячейке, как в NOR, теперь было невозможно, и алгоритм чтения информации значительно усложнился. Тем не менее такой подход позволил создать более вместительные чипы памяти. В современных флешках и твердотельных накопителях используется именно NAND-память. Ну а NOR-чипы нашли применение в тех областях, где ёмкость не играет ключевую роль – например, в автомобильной электронике.

Долгое время элементарная ячейка могла хранить лишь один бит информации. Такая ячейка называется одноуровневой (SLC, single-level cell). Затем появились многоуровневые ячейки с двухбитной разрядностью (MLC, multi-level cell). Наконец, были разработаны трехуровневые ячейки памяти (TLC, triple-level cell). Такие ячейки выгодно отличаются от MLC своей дешевизной. Так, стоимость 1 Гбайт TLC-памяти в 2015 году составила всего $0,4. Обратной стороной памяти с трехуровневыми ячейками является её низкая скорость записи и меньший в сравнении с MLC ресурс.


Однако вернемся к твердотельным накопителям. Как это ни странно, но первый SSD-девайс был представлен в 1976 году — на 8 лет раньше, чем флеш-память. Он был разработан компанией Dataram и носил название Bulk Core.

Многие ошибочно полагают, что в основе любого SSD-накопителя лежит флеш-память, однако это не так. Свое название SSD (Solid State Drive) они получили потому, что в их конструкции не было подвижных элементов.

Конструкция Bulk Core состояла из специального шасси размером 19x15,75 дюймов и расположенных на нем 8 планок RAM-памяти объемом 256 Кбайт каждая. Таким образом, емкость устройства составляла 2 Мбайт. Приобрести Bulk Core можно было за $9700.


Спустя 2 года с момента появления Bulk Core последовал выпуск устройства под названием STC 4305. Накопитель был разработан компанией StorageTek. STC 4305 был размером с целую комнату и мог хранить 45 Мбайт информации. Пропускная способность составляла 1,5 Мбайт/с, что было примерно в 7 раз выше аналогичного показателя жесткого диска IBM 2305. Но и цена инновационного SSD-накопителя была соответствующей: STC 4305 оценивался в $400 тыс.


В 1982 году компания Axlon представила линейку твердотельных накопителей, предназначенных для использования с компьютерами Apple. Устройства получили название Apple II RAMDisk. Из названия становится ясно, что эти накопители использовали RAM-память. Их емкость была не столь внушительна: самой популярной стала версия с 320 Кбайт памяти. Кстати, чтобы предотвратить потерю информации, в комплекте с накопителем поставлялась и подзаряжаемая батарея.


В 1988 году компания Intel представила первые коммерческие чипы флэш-памяти типа NOR. Именно они использовались в первом SSD-накопителе с флеш-памятью – Flashdisk, который был разработан компанией Digipro и выпущен в конце 1988 года. Flashdisk предназначался для использования в компьютерах IBM PC и мог хранить до 16 Мбайт данных. На тот момент стоимость накопителя составляла $5000.

Годом позднее израильская компания M-Systems также представила SSD-накопитель на основе NOR флеш-памяти, но это был только опытный образец. Долгое время израильские инженеры дорабатывали устройство, и только в 1995 году компания сумела выпустить коммерческий SSD-накопитель. Это была модель FFD-350 (Fast Flash Disk), выполненная в привычном для нас форм-факторе 3,5". Максимальный объем накопителя составлял 896 Мбайт, хотя выпускались даже 16-мегабайтные версии. Работал FFD-350 через интерфейс SCSI. Стоимость такого устройства достигала нескольких десятков тысяч долларов, поэтому FFD-350 нашел применение только в авиационной и военной отраслях. На протяжении следующего десятилетия M-Systems расширяла линейку устройств FFD, выпуская новые накопители с улучшенными характеристиками.


Долгое время флеш-память была достаточно дорогим удовольствием. Однако в начале 2000-х годов стоимость её производства значительно упала. Этим воспользовалась компания Transcend, которая в 2003 году выпустила модули флеш-памяти, подключаемые через интерфейс Parallel ATA. Емкость такого накопителя составляла от 16 до 512 Мбайт. Цены на эти устройства начинались от отметки $50, что сделало модели Transcend доступными для обычных пользователей.


Начало бурному росту рынка твердотельных накопителей положила компания Samsung, выпустив в 2006 году 2,5" накопитель емкостью 32 Гбайт и стоимостью $699. Её примеру последовала и компания SanDisk, представившая 32-гигабайтный 2,5" накопитель с интерфейсом SATA.


Кроме этого, в 2006-2007 годах наконец-то удалось решить проблему малого количества перезаписей флеш-памяти. Это позволило рассматривать твердотельные накопители как полноценную альтернативу жестким дискам.


В последующие годы рынок SSD-накопителей стремительно развивался. Выпуском устройств занялось огромное количество производителей. Так, компания OCZ впервые показала твердотельные накопители собственного производства на выставке CES в начале 2008 года.


Стремительно росли и характеристики накопителей: они становились все более вместительными и быстрыми. В связи с этим многие производители задумались о переходе на более быстрый интерфейс. Так появились первые SSD-накопители с интерфейсом PCI Express, в частности, Fusion-io ioDrive Duo.


На сегодняшний день вопрос об интерфейсе стоит особенно остро. Главная проблема интерфейса SATA состоит в том, что производительность современных твердотельных накопителей стала настолько высока, что пропускной способности этой шины (а она составляет 600 Мбайт/с) попросту не хватает для того, чтобы полностью раскрыть потенциал SSD-девайсов. Для сравнения: только две линии PCI Express 3.0 обеспечивают эффективную пропускную способность 1560 Мбайт/с, что почти в 3 раза выше аналогичного показателя SATA.

Вместе со сменой интерфейса планируется и переход на новый протокол NVMe, который должен заменить устаревший AHCI. Использование NVMe позволит снизить латентности и обеспечит более быструю реакцию накопителя на команды, поскольку протокол изначально «заточен» под многопоточную работу с данными.


Многие ожидали, что именно в 2015 году состоится массовый переход от интерфейса SATA к PCI Express, однако этого не произошло. Внедрению новых технологий производители предпочли ценовую войну, результатом которой стало достижение рекордно низкой стоимости 1 Гбайт флеш-памяти — $0,4.


2015-й год также ознаменовал собой начало перехода на технологию трехмерной памяти 3D V-NAND (Vertical NAND). Её суть заключается в том, что ячейки памяти располагаются не только планарно, но и слоями. Это позволяет увеличить емкость, не изменяя при этом индивидуальных размеров ячеек памяти. Интересен тот факт, что производство флеш-памяти 3D V-NAND не требует использования новейших технологических процессов. Например, компания Samsung использует в производстве 3D V-NAND 40 нм техпроцесс. Объем чипов Samsung достигает 256 Гбит, при этом ячейки расположены в 48 слоев.


К сожалению, на сегодняшний день Samsung — единственная компания, имеющая в своем арсенале твердотельные накопители, использующие данную технологию. Тем не менее, в наступившем году у южнокорейской компании обязательно появятся конкуренты. О своих планах по выпуску 3D V-NAND памяти объявили альянс Micron и Intel, компании SK Hynix и Toshiba. Причем в производстве многослойной TLC флеш-памяти Toshiba будет использовать собственную технологию 3D BiCS NAND (Bit Cost Scalable), которая позволит сделать чипы меньше и дешевле конкурентов.


Кроме этого, не стоит забывать и о том, что в 2016 году должна увидеть свет новая технология 3D XPoint, разработанная все тем же альянсом Micron Intel. Информации о технологии пока что не так много.


По словам разработчиков, в основе технологии будет лежать изменение сопротивления материала, располагающегося между проводниками, что обеспечит памяти сверхвысокую скорость чтения и записи. Помимо всего прочего, они обещают, что память 3D XPoint будет в 1000 раз устойчивее к износу, а также при использовании PCI Express и протокола NVMe будет обладать в 10 раз меньшей латентностью, чем флеш-память NAND. Устройства с памятью 3D XPoint получат название Intel Optane и будут использовать в центрах обработки данных.

На этом мы завершаем наш цикл статей об эволюции носителей информации. Но впереди будет еще много интересного! Следите за обновлениями.

© OCZ Storage Solutions

Часть 1: перфокарты, магнитные пленки, дискеты
Часть 2: оптические накопители
Часть 3: жесткие диски
Часть 4: твердотельные накопители

Эволюция носителей информации, часть 3: жесткие диски

Мы уже рассказывали о перфокартах, магнитных пленках и дискетах. Кроме этого, мы проследили за развитием оптических накопителей. Ну а в этот раз наш материал будет посвящен самым привычным для нас устройствам – жестким дискам.




Первый в истории жесткий диск был представлен на 15 лет раньше дискеты – в 1956 году. Эпоху HDD открыла модель IBM 305 RAMAC (Random Access Method of Accounting and Control). В основе ее конструкции лежали пятьдесят алюминиевых пластин диаметром 24 дюйма (или 61 см). Внешне IBM 305 RAMAC напоминал огромный шкаф. Весил он соответствующе: его масса составляла почти тонну.


Принцип работы устройства был основан на магнетизме. Да и в целом жесткий диск работал подобно магнитной ленте. На каждую из сторон алюминиевой пластины наносилось металлическое напыление – ферромагнетик. Запись информации производилась путем намагничивания определенных областей (доменов) на пластине, а чтение – через фиксирование остаточного магнитного поля. При этом считывающая головка свободно перемещалась по поверхности, что обеспечило феноменальную для того времени скорость чтения данных. Извлечь необходимую информацию можно было всего за 600 миллисекунд.


Главным недостатком IBM 305 RAMAC было то, что устройство вовсе не отличалось надежностью. Проблема крылась в хрупкости движущейся головки, которая часто перегревалась и выходила из строя. К тому же быстро изнашивались алюминиевые пластины.


Стоимость одного мегабайта в IBM 305 RAMAC достигала отметки в 10 тысяч долларов. Несмотря на дороговизну, IBM удалось продать около тысячи таких устройств. Выпускался этот жесткий диск на протяжении 5 лет, и лишь в 1961 году компания IBM приняла решение свернуть производство.

На смену 305 RAMAC пришла модель IBM 1301. По сути она представляла собой доработанную версию 305 RAMAC. В IBM 1301 применялись такие же алюминиевые пластины, а проблема перегрева считывающей головки была решена с помощью технологии Air Bearing. Смысл этой технологии заключался в том, что считывающая головка больше не соприкасалась с поверхностью пластин: между ними было 0,5 мкм воздушного пространства.


IBM 1301 отличался более высокой скоростью работы в сравнении с 305-й моделью. Время доступа к нужным данным сократилось в 5 раз и составляло 180 миллисекунд. При этом емкость диска также увеличилась и составляла уже 28 Мбайт, что почти в 6 раз больше, чем аналогичный показатель IBM 305 RAMAC.


После IBM 1301 последовал выпуск модели с индексом 1311. Это был первый HDD со съемными дисками. Он состоял из 14 пластин, а его емкость составляла 2,6 Мбайт. Устройство уже не было таким массивным, как предшественники. Модель оказалась настолько успешной, что IBM не снимала ее с конвейера вплоть до 1975 года.


Однако прародителем современных жестких дисков считается устройство IBM 3340, увидевшее свет в 1973 году. Это был первый девайс, в котором применялся специальный микрочип для управления вращением дисков и перемещением считывающей головки.


Также в конструкции этого HDD применялись более легкие и аэродинамические пластины, которые помещались в герметичный корпус. Таких пластин в IBM 3340 было две, при этом одна из них была съемной. Объем каждой пластины равнялся 30 Мбайт.


По этой причине в маркировке жесткого диска обычно указывалось «30-30», что вызывало ассоциации с легендарной винтовкой Winchester 30/30. Вскоре название «винчестер» прочно закрепилось за IBM 3340, а после – и за другими жесткими дисками.


В 1980 году IBM представила миру жесткий диск IBM 3380. Это было первое в своем роде устройство, которому покорился гигабайтный рубеж. Емкость такого диска составляла 2,52 Гбайт. А скорость передачи данных достигла 3 Мбайт/с.


Стоит отметить, что все выпущенные до этого времени жесткие диски компании IBM предназначались для использования в промышленных масштабах. И только в 1980 году компания Seagate выпустила первый HDD для домашних компьютеров. Модель получила название ST-506. Она была исполнена в 5,25" форм-факторе, а ее объем составлял 5 Мбайт. Стоило такое устройство внушительные $1500. Ну а спустя год появилась более быстрый и ёмкий накопитель с интерфейсом Seagate ST-412, который устанавливался в компьютеры IBM PC/XT.


Переход на форм-фактор 3,5" состоялся в 1983 году, когда небольшая шотландская компания Rodime представила устройство RO351 с объемом 6,38 Мбайт. А первый девайс с форм-фактором 2,5" был выпущен американской компанией PrairieTek в 1988 году. В том же году появился и 63-мегабайтный 2,5" винчестер Toshiba Tanba-1, предназначенный для установки в ноутбуки.


В 90-х годах на развитие жестких дисков оказали влияние две новые технологии, разработанные компанией IBM. Первая из них – это магнитные головки на гигантском магниторезистивном эффекте. Эта технология позволила достичь более высоких показателей плотности записи – до 2,7 Гбит на квадратный дюйм. Второй инновационной технологией был новый способ форматирования пластин под названием No-ID. Его суть заключается в том, что идентификационная информация сектора хранится не на поверхности диска, а в постоянной памяти жесткого диска. Это позволило повысить плотность записи еще примерно на 10%.


Не забывали производители и об увеличении скорости работы жестких дисков. Долгое время стандартной скоростью вращения шпинделя являлся показатель 5400 оборотов в минуту, затем он несколько увеличился и равнялся уже 7200 об/мин. Периодически на рынке появлялись устройства, которые обладали более внушительными показателями. Так, в 1999 году компания Seagate представила линейку быстрых жестких дисков Cheetah. Их высокая производительность обеспечивалась скоростью вращения шпинделя, равной 15000 об/мин, что более чем в 2 раза превышало стандартный показатель. Объем такого устройства составлял 36 Гбайт.


Намного более популярной стала серия винчестеров под названием Raptor компании Western Digital. Изначально эти жесткие диски разрабатывались для использования в серверных системах, однако затем прочно закрепились в сегменте игровых компьютеров. Пластины модели Western Digital Raptor вращались несколько медленнее, чем в Seagate Cheetah. Скорость вращения шпинделя составляла «всего» 10000 об/мин, однако этого было более чем достаточно, чтобы оставлять обычные жесткие диски в плане производительности далеко позади. К сожалению, линейка WD Raptor не отличалась надежностью.


В конце 2005 года был освоен метод перпендикулярной записи. До этого момента абсолютно все жесткие диски работали по методу параллельной записи. В чем же была суть новой технологии? При использовании параллельной записи магнитные частицы располагаются таким образом, что вектор магнитной направленности проходит параллельно плоскости пластины. Такой подход наиболее простой, однако у него есть один недостаток: между доменами (минимальными ячейками информации) требуется наличие довольно больших буферных зон для снижения сил взаимодействия между ними.


Напротив, при использовании метода перпендикулярной записи вектор магнитной направленности располагается уже перпендикулярно поверхности диска, что значительно снижает силы взаимодействия. Следовательно, уменьшается и необходимый размер буферных зон. Это позволяет увеличить плотность записи.


Благодаря методу перпендикулярной записи индустрии жестких дисков покорился терабайтный рубеж: в 2007 году компания Hitachi представила первую в мире модель The Deskstar 7K1000 объемом 1 Тбайт.


Несмотря на то что твердотельные накопители занимают все большую и большую часть рынка хранилищ данных, технологии жестких дисков вовсе не уходят на второй план и продолжают совершенствоваться. Так, очень перспективно выглядит технология компании Western Digital под названием HelioSeal, которая предусматривает использование гелия вместо воздуха внутри корпуса винчестера. Благодаря тому что гелий легче воздуха, внутри HDD создается идеальная среда для движущихся с высокой скоростью пластин. Кроме этого, снижаются вибрации между пластинами и считывающей головкой.


Первые «гелиевые» жесткие диски были представлены в конце 2013 года под названием Ultrastar He6. А в начале декабря компания Western Digital объявила о выпуске обновленной линейки устройств Ultrastar He10. Эти девайсы используют метод перпендикулярной записи, а их плотность составляет 816 Гбит на квадратный дюйм. Емкость модели Ultrastar He10 составляет 10 Тбайт.


Еще одной интересной технологией является Seagate SMR (shingled magnetic recording) – метод перпендикулярной записи с перекрытием дорожек. В отличие от обыкновенного перпендикулярного подхода, где дорожки информации расположены бок о бок, в технологии SMR дорожки перекрывают друг друга, образуя что-то, напоминающее черепичную крышу. Применение SMR позволяет повысить плотность записи примерно на 25%. Кстати, Seagate и Western Digital уже взяли на вооружение данную технологию.


Также в ближайшем будущем планируется наладить производство жестких дисков с применением технологии HAMR (Heat-assisted magnetic recording), которая сочетает в себе магнитное чтение и магнитооптическую запись. Принцип ее работы заключается в том, что запись информации осуществляется путем нагревания домена лазером и перемагничиванием. Такой подход позволит еще больше увеличить плотность записи. По прогнозу компании Seagate, объем классических 3,5" жестких дисков с применением технологии HAMR в отдаленной перспективе сможет достичь отметки в 50 Тбайт. Ну а первые HAMR HDD должны появиться уже в 2020 году.

© OCZ Storage Solutions

Часть 1: перфокарты, магнитные пленки, дискеты
Часть 2: оптические накопители
Часть 3: жесткие диски
Часть 4: твердотельные накопители

Эволюция носителей информации: о перфокартах, магнитных плёнках и дискетах

Технология хранения данных насчитывает уже более 200 лет.



Наш рассказ начинается, конечно же, с перфокарт. Многие ошибочно считают, что перфокарты являются открытием XX века, однако, это не так. Первые перфокарты появились ещё в начале XIX века и использовались в ткацком станке, созданном французским изобретателем Жозефом Мари Жаккаром.


Итак, что же придумал Жаккар. В XIX веке производство ткани представляло собой довольно трудоемкий процесс, однако по своей сути это было постоянное повторение одних и тех же действий. Имея за спиной огромный опыт работы в качестве наладчика станков, Жаккар подумал, почему бы этот процесс не автоматизировать.

Плодом его работы стала система, использующая огромные твердые пластины, в которых были проделаны несколько рядов отверстий. Эти пластины и были первыми в мире перфокартами. Справедливости ради нужно отметить, что Жаккар все же не был в этой области новатором. Французские ткачи-изобретатели Базиль Бушон и Жак Вокансон также пытались использовать продырявленные ленты в своих ткацких станках, но не смогли завершить начатое.


Принцип работы Жаккардовой машины заключался в том, что на вход в считывающее устройство, которое представляло собой набор щупов, связанных со стержнями нитей, подавались перфокарты. При проходе перфорированной ленты через считывающее устройство щупы проваливались в отверстия, поднимая вверх соответствующие нити. Так определенная комбинация дыр в перфокарте позволяла получить нужный узор на ткани.


Перфокарты также занимали центральное место в изобретениях американского инженера Германа Холлерита, который в 1890 году создал табулятор – устройство, предназначенное для обработки буквенных и числовых символов, записанных на перфокарту, и вывода результата на бумажную ленту. На первых порах табулятор Холлерита использовало Бюро переписи населения США, а несколько позже систему взяли на вооружение в железнодорожном управлении и правительстве. К слову, в 1896 году Холлерит основал компанию Tabulating Machine Company, которая в 1911 году стала частью конгломерата C-T-R, который в свою очередь в 1924 году был переименован в IBM.


Основным преимуществом перфокарт была простота и удобство манипуляции данными. В любом месте колоды можно было добавить или удалить карты, а также легко заменить одни карты другими. Но были и свои минусы, которые с течением времени начали перевешивать плюсы. Прежде всего, это малая ёмкость. Как правило, перфокарта вмещала в себе всего лишь 80 символов. Это значит, что для хранения 1 Мбайта данных потребовалось бы порядка 10 тысяч перфокарт. Также для перфокарт была характерна низкая скорость чтения и записи. Даже самые быстрые считывающие устройства не обрабатывали более тысячи перфокарт в минуту, что соответствует примерно 1,6 Кбайт/мин. И, конечно, надёжность. Повредить изготовленную из тонкого картона перфокарту или проделать лишнее отверстие было проще простого.


Пик развития перфокарт пришелся на середину XX века, а закат эпохи наступил в 1980-х годах, когда им на смену пришли более совершенные магнитные носители информации.

Первая магнитная пленка была создана в 1928 году немецким ученым Фрицем Пфлюмером. Такая пленка представляла собой тонкую бумагу, на которую был нанесен тонкий слой оксида железа. В том же году Пфлюмер показал прибор, предназначенный для магнитной записи на такую ленту. При записи информации на пленку оказывалось воздействие магнитным полем, и на её поверхности сохранялась намагниченность.


Первым коммерческим компьютером, который комплектовался магнитной лентой, был UNIVAC-I, выпущенный в 1951 году. В сравнении с перфокартами, магнитная плёнка UNIVAC-I была намного более вместительной – в нее можно было уместить порядка 1 Мбайта данных.
В качестве основного хранилища данных магнитные ленты использовались до 1980-х годов. В этот период они устанавливались в мейнфреймы и мини-компьютеры. С приходом жестких дисков магнитной ленте была отведена роль резервного хранилища данных. В 2000-х годах неоднократно высказывались мнения, что в скором времени магнитные пленки окончательно уйдут на покой. Начиная с 2008 года рынок ленточных накопителей уменьшался в среднем на 14% в год. Однако ситуация кардинально поменялась в 2011 году, когда Таиланд, где были расположены огромные производственные мощности производителей жестких дисков, сильно пострадал от наводнения. Из-за стихийного бедствия объемы производства HDD значительно упали, а цены на продукцию выросли на 20-60%. В результате магнитная лента обрела вторую жизнь.
Рынок ленточных накопителей поддерживается ещё тем фактом, что такие запоминающие устройства до сих пор обходятся дешевле, чем современные жесткие диски. По словам Эвангелоса Элефтеро, руководителя отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе, 1 Гбайт магнитной ленты стоит примерно 4 цента, тогда как 1 Гбайт дискового пространства на HDD обходится как минимум в 2,5 раза дороже – 10 центов. По этой причине выбор в пользу магнитной плёнки делают, к примеру, крупные исследовательские лаборатории, где существует необходимость хранить огромные объемы информации. К примеру, для хранения результатов на Большом адронном коллайдере используется именно магнитная лента. Для хранения 28 петабайтов данных на жестких дисках организации CERN, ответственной за создание и работу коллайдера, пришлось бы раскошелиться более чем на 38 миллионов долларов. В то время как хранение такого же объема информации на магнитной ленте обошлось им всего лишь в 1,5 миллиона.


По словам главы подразделения обработки и хранения данных CERN Альберто Пейса, помимо дешевизны, у магнитной ленты есть ещё несколько преимуществ перед жесткими дисками. Во-первых, это надежность. В случае разрыва ленты её всегда можно склеить, потеряв при этом лишь несколько сотен мегабайт даных. А при поломке жесткого диска, скорее всего, будет утеряна вся информация. Во-вторых, это скорость доступа. Роботу, который выбирает нужную кассету и вставляет её в считыватель, требуется около 40 секунд для выполнения этой операции. Но даже это примерно в 4 раза быстрее, чем если бы данные приходилось считывать с жесткого диска. В-третьих, срок службы магнитных лент достигает 30 и более лет, тогда как жесткие диски могут работать на протяжении всего 5 лет.


Альберто Пейс выделил ещё один значимый плюс магнитных лент – их безопасность. В теории злоумышленники могут получить доступ к жестким дискам, тогда как онлайн-доступ к магнитной плёнке получить невозможно.

Следующей ступенью эволюции носителей информации стала дискета. Она увидела свет в 1971 году, а её разработкой занималась компания IBM. История создания дискеты довольно проста: перед IBM встал вопрос о том, как рассылать своим клиентам обновления софта, и инженер компании Алан Шугарт предложил идею быстрого и компактного гибкого диска. Первая дискета была исполнена в 8-дюймовом форм-факторе и имела объем 80 Кбайт. Поддерживалась лишь одноразовая запись. Интересно, что изначальная конструкция дискеты не предусматривала привычный всем нам пластиковый кожух – IBM планировала поставлять гибкий диск без какой-либо защиты. Однако в таком виде дискета притягивала к себе пыль, вдобавок её легко можно было повредить. Поэтому было принято решение упаковать диск в пластиковый футляр.


На самом деле первые дискеты вовсе не пользовались популярностью. Причина этого заключается в том, что стоимость дисководов, которые требовались для чтения дискет, едва ли не превышала стоимость целого компьютера.

Шугарт и инженеры IBM продолжали работу над улучшением своего детища. В 1973 году объем гибких дисков был увеличен до 256 Кбайт, а в 1975 году он стал ещё в 4 раза больше. Но главной задачей Шугарта являлось не столько увеличение объема памяти дискеты, сколько уменьшение её размеров. Изначально дискета задумывалась как карманное устройство, но 8-дюймовый девайс можно было уместить разве что в среднеразмерную дорожную сумку.


И вот в 1976 году появился формат 5,25 дюймов. Нужно отметить, что этот стандарт разрабатывался основанной Шугартом компанией Shugart Associates в тесном сотрудничестве с организацией Wang Laboratories, которая планировала использовать уменьшенный формат в своих настольных компьютерах. Почему же 5,25"? Когда Ан Вэнг из Wang Laboratories вместе с Джимом Адкиссоном и Доном Массаро из Shugart Associates обсуждали будущий форм-фактор в баре, их внимание привлекла обычная салфетка. Так и родилась идея создать дискету с такими размерами. Она получила название mini-floppy.


Привычный 3,5-дюймовый формат дискета получила в 1981 году. Создателем формата выступила компания Sony. Первые 3,5" дискеты имели объем 720 Кбайт, но вскоре появились модели, вмещающие 1,44 Мбайт информации. Но к середине 90-х годов даже этого объема уже было недостаточно. Тем не менее дискеты ещё долго удерживались на рынке носителей информации, и лишь с появлением по доступной цене накопителей на основе флэш-памяти начали сдавать свои позиции.


Несмотря на все преимущества «флэшек» над дискетами, некоторые производители предпринимали попытки спасти устаревающий стандарт. Так, компания Iomega разработала дискету под названием Iomega Zip, которая отличалась от классических дискет увеличенным до 100 Мбайт объемом памяти и более высокой скоростью чтения и записи. Но из-за высокой стоимости и проблем с надежностью Iomega Zip так и не смогла потеснить на рынке ни 3,5" дискеты, ни накопители на основе флэш-памяти.
© OCZ Storage Solutions

Часть 1: перфокарты, магнитные пленки, дискеты
Часть 2: оптические накопители
Часть 3: жесткие диски
Часть 4: твердотельные накопители